Standards for specification of microgrid controllers (IEEE Std 2030.7/8) and DERMS (IEEE P2030.11)

IRED

Session 5 – Standards and grid codes

Geza Joos McGill University, Canada

Outline

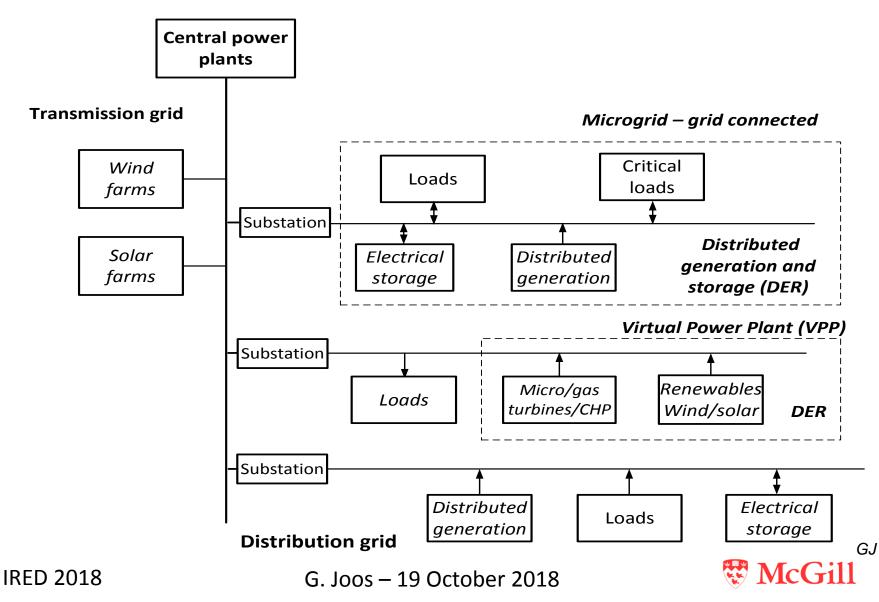
- Distributed energy resources (DER) integration
 - Resource characteristics
 - Challenges variability, dynamics
- Aggregation options
 - Microgrid standards, IEEE Std 2030.7/8
 - DERMS guide, IEEE P2030.11
- Observations stakeholder perspective

DER features – types and features

- Energy resource local power generation
 - Local resources solar, wind, alternative fuels
 - Conventional fuels (diesel engines)
- Renewable resources variable and intermittent
 Non dispatchable (curtailment possible) wind, solar
 Operated at Maximum Power Point Tracking (MPPT)
- Storage generator (discharging) / load (charging)
 Firming production balancing variability
 Leveraging storing/retrieving excess power
- Controlled/curtailable loads demand response

DER – grid interface – dynamics

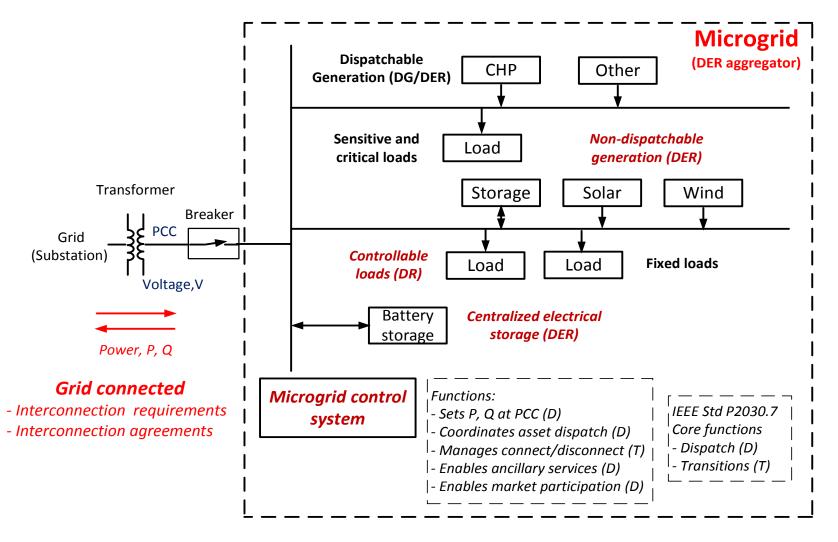
- Generator/storage grid interface types
 - Rotating machines conventional synchronous generators
 - Power electronic converters (inverters)
- Power electronic converters (static generators)
 - Performance dictated by control loops acting on an (ideal) source (voltage for voltage source converters)
 - No inertial response, no loss of synchronization (if PLL used)
 - Control options grid following (P-Q mode) or grid forming (synchronous generator)



DER grid integration challenges

- Dealing with power output variability individual DER
 - -Non dispatchable
 - Local balancing/firming storage or provided by the grid
 - Power electronic interfaces can provide reactive power
- Dealing with dynamic characteristics individual DER
 - Interaction between rotating and static generators
 - Faster response of the power electronic interfaces
- Issues related to a large penetration of DER needs
 - Firming production balancing variability
 - Providing grid support and ancillary services

DER integration – distribution grid

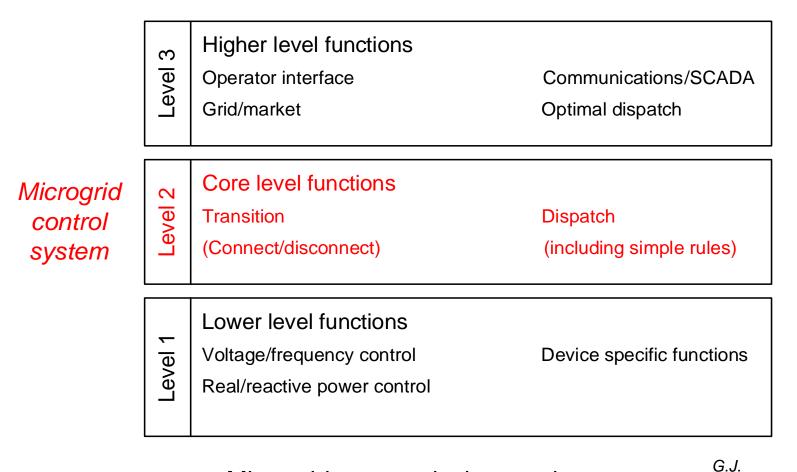


Dealing with a large DER penetration

- Grid interconnection requirements individual DER
 - Utility grid codes or standards IEEE Std 1547
 - Requirements for ride-through (V/ f), grid support, communications
- DER aggregation microgrids
 - Utility requirements or standards IEEE Std 2030.7/8
 - Microgrid (entity) manages local DER interconnection and aggregation, power and ancillary services provided to local grid
- DER aggregation DER Management Systems (DERMS)
 - Functional specification of DERMS IEEE P2030.11, guide
 - DERMS aggregated power (P, Q), ancillary services for other aspects, local DER codes apply

Microgrid operation – IEEE Std 2030.7

IRED 2018


G. Joos – 19 October 2018

G.J.

/IcGill

IEEE Std 2030.7 – microgrid functions

Distribution grid

Microgrid assets, devices and components

G. Joos – 19 October 2018

IEEE Std 2030.7 – Scope and approach

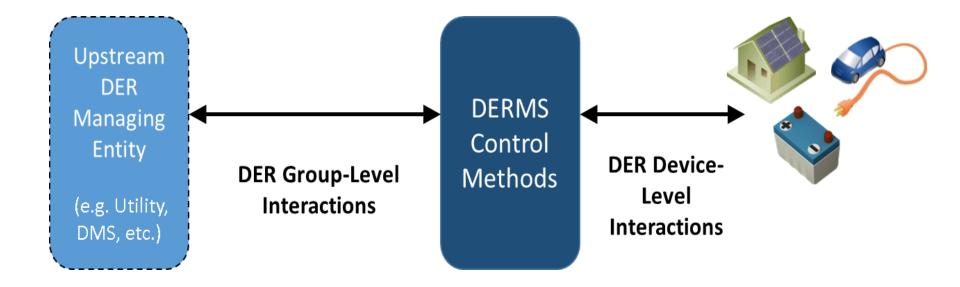
- Functional specification of a microgrid control system
- Functions of the control system
 - Allows the microgrid to manage itself, operate autonomously or grid connected, and connect to and disconnect from the distribution grid
 - Controls the exchange with the distribution grid of power and the supply of ancillary services
- Scope of standard functions common to microgrids, regardless of topology and configuration – for interoperability
- Requirements set by DSO/utility (interconnection) and microgrid operator (internal and grid interface)
- Test procedures covered in companion IEEE P2030.8
- Approved in Dec 2017

IEEE Std 2030.7/8 – Metrics and conformance

- Components of conformance validation
 - Elements of the function to be tested
 - Function characterization
 - Testing approach (scenarios) and measured parameters
- Test procedures covered in companion IEEE P2030.8
 - Scenarios
 - Instrumentation
- Metrics covered in IEEE P2030.8
 - Based on interconnection requirements
 - Agreed upon between the microgrid and DSO
- Approved in June 2018

DERMS guide – IEEE P2030.11 WG

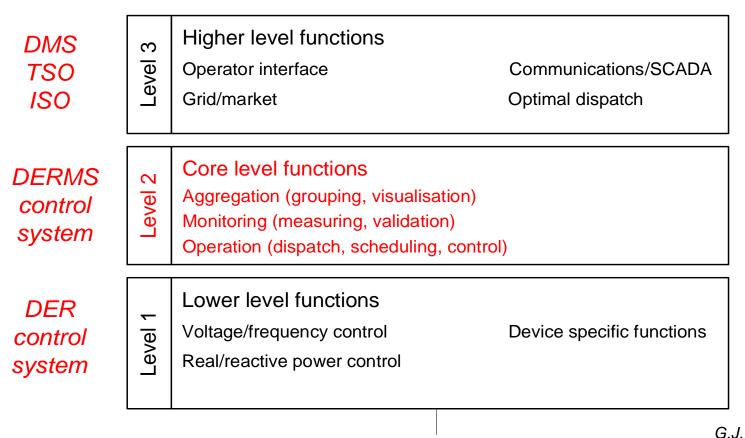
- Distributed Energy Resources Management Systems (DERMS) Functional Specification
- Purpose of DERMS
 - Aggregation of Distributed Energy Resources (DER)
 - A link between a large number of DER (mainly solar) and the Distribution Management System (DMS)
- Scope of Guide
 - -Guiding principles for application and deployment
 - Basic functional requirements and core functions



DERMS guide – IEEE P2030.11 WG

- Stakeholders
 - Independent aggregators
 - Utilities integrating and interconnecting DER
 - Virtual Power Plant (VPP) control systems
 - Equipment suppliers, consultants, regulators
- An extension of the microgrid dispatch function, a core function defined in IEEE Std 2030.7
- IEEE PAR approved in March 2018, first meeting June 2018

DERMS – placement and function


RE: EPRI DERMS WG

G. Joos – 19 October 2018

DERMS – core functions

Electric grid – distribution / transmission

DER devices and associated components

IRED 2018

G. Joos – 19 October 2018

Observations – stakeholder perspective

- DER, embedded, can provide services to the electric grid/wholesale market P, E, Q, ancillary services
- DER interconnection/integration
 - Done on an individual DER basis by the DSO, TSO, other
 - Aggregated by independent operators or utilities using microgrids or DERMS
- Utilities/regulators need to be involved in defining
 - DER interconnection/integration requirements
 - DERMS designed to provide customers/buyers bulk services products – aggregated P, E, Q, ancillary

